Numerical modeling of pore size and distribution in foamed titanium
نویسنده
چکیده
To facilitate the design and development of porous metals, simulation of their mechanical behavior is essential. As an alternative to complex tomography procedures, a methodology has been developed to construct a simulated microstructure that retains the essential features of the experimental material. The target material is a moderate porosity titanium foam that is being developed as a bone implant material. The methodology applies stereology theory to a foaming process based on growth of pressurized pores. Three-dimensional (3D) pore size and pore distribution information is derived from 2D sections for a sample with low porosity, early in the foaming process. A 3D microstructure is developed based on the 3D location and size distribution of the pores by use of a computational procedure. Pores are allowed to grow and coalesce in a simple simulated foaming process to achieve microstructures of higher porosity. These data have been used as inputs to write scripts of I-DEAS to create 3D finite element models which are then examined for basic global and local mechanical properties. ! 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Sensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling
Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...
متن کاملAn Evaluation of Rock Integrity and Fault Reactivation in the Cap Rock and Reservoir Rock Due to Pressure Variations
Cap rocks are dams which can prevent the upward movement of hydrocarbons. They have disparities and weaknesses including discontinuities, crushed areas, and faults. Gas injection is an effective mechanism for oil recovery and pore pressure. With increasing pore pressure, normal stress is reduced, and the integrity of impermeable boundaries (cap rock, fault, etc.) becomes instable. A successful ...
متن کاملInvestigation of Activation Time on Pore Size Distribution of Activated Carbon Determined with Different Methods
Three activated carbons are synthesized in a rotary reactor at different activation times. The adsorption isotherms of the samples are measured The pore size distribution of the samples is determined using combined Saito and Foley method, BJH method. An average potential function has been determined inside the cylindrical pores. The effect of activation time on the pore size distribution sample...
متن کاملSynthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst
S-doped and bare mesoporous TiO2 were prepared using titanium tetraisopropoxide and thiocarbamide as raw materials. Prepared materials were characterized by means of fourier transform infrared spectroscopy FT-IR, thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), UV–Vis absorption spectroscopy, Brunauer–Emmett–Teller (BET) specific surface area and Barrett–Joy...
متن کاملAqueous Extract of Acanthophyllum laxiusculum Roots as a Renewable Resource for Green synthesis of nano-sized titanium dioxide using Sol-gel Method
In this study, green or eco-friendly synthesis of TiO2 nanoparticles (NPs) was performed by using the aqueous extract of Acanthophyllum laxiusculum. The plant genus Acanthophyllumis one of the natural sources rich in nonionic surface active agents known as saponins. Sol-gel method as one of the most common techniques widely used in nano-field was applied to synthesize the titanium dioxide nanop...
متن کامل